CS 4501: Optimization

Shangtong Zhang SHANGTONG@VIRGINIA.EDU

Department of Computer Science
University of Virginia

Roadmap
1 What’s Optimization?

2 Warmup with Newton’s Method

Assignment 1 (10%): Implement Newton’s method

3 Background for Projected Gradient Descent

Assignment 2 (15%): Math basics I.

4 Projected Gradient Descent

Assignment 3 (10%): Implement projected gradient descent

5 Background for Mirror Descent

Assignment 4 (15%): Math basics IT

6 Mirror Descent

Assignment 5 (10%): Implement mirror descent

7 Background for Proximal Gradient Descent

8 Proximal Gradient Descent

Assignment 6 (10%): Implement proximal gradient descent

Assignment 7: Final Project

Written part (5%): Derive chain rule for feedforward networks

Coding part (25%): Implement gradient descent for feedforward networks
1. What’s Optimization?
min f(6)
A typical setting in AI and ML is that f is parameterized by 6.

e Regression, e.g., x; is a zip code, y; is house price

N

F0) = (go(w:) — i)

=1

(©2023 Shangtong Zhang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

Ne}

10
11

11

11
13

13
13
13

https://creativecommons.org/licenses/by/4.0/

ZHANG

e Classification, e.g., x; is an image, y; is a probability distribution over possible objects,
cat or dog?

e Unsupervised learning, e.g., Large Language Model (LLM)

N

F0) =" Lha, (g0, (),)
i=1
e Reinforcement learning, e.g., AlphaGo

f(6) =E [Zr(st,mst))]

t=1

2. Warmup with Newton’s Method

Find some z, such that f(z.) =0 with Newton’s Method.
How is Newton’s method related to optimization?

https://en.wikipedia.org/wiki/Newton%27s_method

OPTIMIZATION

Let's suppose that we want to approximate the solution to f (:z:) = 0 and let’s also suppose that we have somehow
found an initial approximation to this solution say, . This initial approximation is probably not all that good, in fact it
may be nothing more than a quick guess we made, and so we’d like to find a better approximation. This is easy
enough to do. First, we will get the tangent line tof (z)at z.

y = f(zo) + f' (%) (z — z)

Now, take a look at the graph below.

’ y=f(x)
/4 Tangent at x;
/

/ Tangent at x;

4

>/
"."‘ W M X
X /n X

The blue line (if you're reading this in color anyway...) is the tangent line at x,. We can see that this line will cross
the z-axis much closer to the actual solution to the equation than z, does. Let’s call this point where the tangent at
x crosses the z-axis x, and we’ll use this point as our new approximation to the solution.

So, how do we find this point? Well we know it’s coordinates, (zl, 0), and we know that it's on the tangent line so
plug this point into the tangent line and solve for z; as follows,

0= f(zo) + f' (o) (1 — =)

. __f(=)

P £ (=)
o — g £ (o)
T ()

So, we can find the new approximation provided the derivative isn’t zero at the original approximation.

Now we repeat the whole process to find an even better approximation. We form up the tangent line to f (z)at z;
and use its root, which we’ll call 5, as a new approximation to the actual solution. If we do this we will arrive at the
following formula.

_ f(=)
f (1)
This point is also shown on the graph above and we can see from this graph that if we continue following this

process will get a sequence of numbers that are getting very close the actual solution. This process is called
Newton’s Method.

L9 =T

Figure 1: Intuition behind Newton’s method (source)

https://tutorial.math.lamar.edu/classes/calci/newtonsmethod.aspx

ZHANG

Newton’s Method

If z,, is an approximation a solution of f () = 0 and if f' (z,,) # 0 the next approximation is given by,

 f(=)
f (@)

Tp+1 = T

Figure 2: Newton’s method (source)

Newton’s method applied to the optimization problem

min f(6)
_ f'(0n)
9n+1 - Qn - f”(en)

https://tutorial.math.lamar.edu/classes/calci/newtonsmethod.aspx

OPTIMIZATION

Proof of quadratic convergence for Newton's iterative method |[edit]

According to Taylor's theorem, any function f(x) which has a continuous second derivative can be represented by an expansion about a
point that is close to a root of /(x). Suppose this root is a.. Then the expansion of f(a) about x,, is:

fla) = f(zn) + f'(zn)(a — z0) + Ry)

where the Lagrange form of the Taylor series expansion remainder is

1
Ry = f"(€)(a—z)",
where ¢, is in between x,, and a.

Since a is the root, (1) becomes:

0= f(a) = f(zs) + f'(zn)(a — z,) + %f’/(gn)(a - In)2)
Dividing equation (2) by f(x,,) and rearranging gives

fa) o o)
f/(zn) +(a ”) - 2f’(mn) (n) (3)

Remembering that x,, . | is defined by

Tntl =Tpn — 7, 1 @

f(zn)

one finds that

a—1Ty1 = M(oz—ar:n)z.
~—— 2f’(mn) ~—

En+1 €n

That is,

Taking the absolute value of both sides gives

| £ (4n)]
lent1] = m = (6)
Equation (6) shows that the order of convergence is at least quadratic if the following conditions are satisfied:
1. f'(x) # 0; for all x € I, where [is the interval [a — |&g|, & + |&o]];
2. f"(x) is continuous, for all x € I;
3. Mgy <1

where Mis given by

w= (sl @) (s o7y,

If these conditions hold,

lens1] < M-

Figure 3: Convergence proof (source)

What if 8 is not a scalar?
e Computing Hessian is expensive — first-order methods

e Write things in a compact way — linear algebra

https://en.wikipedia.org/wiki/Newton%27s_method

ZHANG

3. Background for Projected Gradient Descent

extended real function

motivation of linear algebra (Section 3.1 of Gallier and Quaintance (2019))
vector space (Section 3.2 of Gallier and Quaintance (2019))

linear independence, subspaces (Section 3.4 of Gallier and Quaintance (2019))
norms, inner product

matrices (Section 3.6 of Gallier and Quaintance (2019))

Euclidean space

linear transformation

extended real function

convex set

convex function

differentiability

closedness

projection into convex set

Lipschitz continuity

orthogonal projections (Section 6.4)

4. Projected Gradient Descent

Problem:

min f()

Assumption 4.1 f is strictly convex and differentiable at every x € C

Assumption 4.2 C is closed, and convex

Assumption 4.3 f is Lipschitz continous with a Lipschitz constant Ly

OPTIMIZATION

Denote the optimal solution as x, and the optimal value as f,. Define

fake = kE%inkf(xk).

=U,...,

Algorithm:

Tp+1 = Po (xk - tkf/(ifk))

Lemma 1 (fundamental inequality)

2
lzks1 — za|? < ok — @a]|® = 2t (flar) — o) + G £/ (@)

Proof

l@nin = 2® <[|Po(ar — tef'(24) — Po(@.)|

<||zk — tif (xr) — JC*HZ
<ag — @l — 265 (f (), 2% — 24) + tin’(mk)HZ
<z, — wal|? = 205 (f (1) — f) + 3] /(@) ||

Polyak’s step size:

f(xk)ff* /
t = IF @I f'(zy) # 0,
1 f'(zg) =0

Theorem 2 (convergence with Polyak’s step size)

ki1 — 2l <llax — 2%,
k—o0
Ly||zo — ||

f*,k_f*g \/m

Proof

lerrs — @l <llaw — @l = 2t (f(x) = £) + 2] @)
o Ul = L

=l = . 17)P
Ry
|~ T

ZHANG

Telescoping yields

1 k
[D (flaw) = f)? < llwo = 2l = flogsr — 2.
n=0
Moreover,
k
D (flar) = £)2 = b+ D(far — f)?
n=0

Fejer monotonicity (Definition 8.15, Theorem 8.16, and Theorem 8.17 of Beck (2017)) im-
plies limg_ oo Tp = 4.

1. convergence with dynamic step sizes (Section 8.2.4 of Beck (2017))

2. strongly convex case (Section 8.2.5 of Beck (2017))

5. Background for Mirror Descent

e dual space

e conjugate functions

Fenchel’s inequality

~ =

— conjugate gradient theorem
Theorem 4.23

L-smoothness

— Theorem 5.4
— descent lemma

first order characterization

— second order characterization™
e strong convexity

— first order characterization

— conjugate correspondence theorem
The conjugate of f is

[(y) = max(y, z) — f(z).

OPTIMIZATION

Theorem 3 (first order characterization of strong convexity) The following claims
are equivalent.

(i) f is o-strongly convex
(i) f(y) > f(@) +(Vf(z),y—z)+ §lly — =]
(iii) (Vf(z) = Vf(y),z—y) > olz—y|

Theorem 4 (first order characterization of L-smoothness) The following claims are
equivalent.

(i) f is L-smooth

(ii) f(y) < f@)+(Vf(z),y—2)+ &]e -yl
(iii) f(y) > f(@) + (Vf(@),y — o) + 5 |VF(@) = VW)

(iv) (V)= Viy),z—y) > $I|IV@) - VW)

(v) FQz+ (1= Ny) > Af(2) + (1= N f(y) = 5A1 = V)[|lz — y|?

Theorem 5 (conjugate gradient theorem) Suppose f is convex, then the following claims
are equivalent.

(1) (z,y) = f(z) + [*(y)
(i) y =V f(z)
(i) © =V f*(y)

Proof
(i)
= f(z) 2f(z) +(y,z —x) V2
= (y,2) — f(z) 2(y,2) — f(2)Vz
= (y,7) — f(2) >f*(y)
= (i)

V[(y) = argmax {(y, z) — f(z)}
Theorem 6 (conjugate correspondence theorem) Suppose f is convex. f is o-strongly
convez w.r.t. ||| if and only if f* is L-smooth w.r.t. |-|,.
Proof
(V@)= Vf(y)x—y) 2ollz -y
(x =y, Vf*(2) = V() 20|V (@) - V@)

ZHANG

6. Mirror Descent

Problem:
min f(x)

zeC

Assumption 6.1 f is strictly convex and differentiable at every x € C
Assumption 6.2 C is closed and conver

Bregman distance

Bw(x7y> = w(x) - w(y) - <Vw(y),x - y>

Assumption 6.3 1. w s convex
2. w is differentiable

3. w+ d¢ is o-strongly convex

Projected Gradient Descent:
x11 =Polxy, — tif'(xr))
.1 2
—argin {5l = (o -)|
1

. 1
:argggg{QHx il S @)l). —xk>}

. 1 2 !
:argggél{QHx—ka + ti(f (xk),x—xk>}
Mirror Descent:

Thi1 :arggéig {Bu(z,z) + te{ [(zk), 2 — 1)}

=arg gélg {w(z) —w(zg) — (Vw(zg), z — xp) + t(V f(zr), r — zk) }

=argmin {w(z) — (Vw(zw), 2) + te(V f(2r), 2)}
= argmin {(1V / (32) — V(). @) + (@)
=Vuw*(Vw(zy) — t,V f(xr))

Theorem 7 (non-Euclidean second prox theorem) Suppose w and ¢ are convex and
differentiable and dom(y)) C dom(w), and w + S4om(y) 5 o-strongly conver. For any b,

define
a = argmin {¢(z) + By(x,b)}.
Then for any u, we have

(Vw(b) = V(a),u —a) <¢(u) —(a).

10

OPTIMIZATION

Proof

Vi(a) + Vw(a) — V()
(Vw(b) — Vw(a),u — a)

Il
o

(Vip(a),u —a) <(u) —4(a).

Lemma 8 (fundamental inequality for mirror descent)

2
(k) = 1) < B, 28) = Bulwe, i) + 25 | @)

Proof
(Vw(zy) = Vw(@p1),u — zp1) < t(f'(@r), u — Tpya)-

By the three-points lemma (cf. [z —yl|> = [z — 2|* + 3z =yl + (x — 2,2 — y)), we
have

Bu(u, Tpy1) + Buw(pi1, 2) — Buw(w, zr) < e f'(@r), u — zpt1)-

Convergence with fixed number of iterations (Section 9.2.2 of Beck (2017)) and dynamic
stepsize (Section 9.2.3 of Beck (2017)).

7. Background for Proximal Gradient Descent
e second prox theorem

e nonexpansivity

The proximal of x w.r.t. f is
. . 1 2
prox;(z) = arg min f(u) + 5”3@ — ul|
8. Proximal Gradient Descent

min {F(z) = f(x) + g(z)}
Projected Gradient Descent:
rp1 =Po(ay, — trf'(xr))

=arg min {;Hx — (g — tkf,(xk))HZ}

zeC

11

ZHANG

Proximal Gradient Descent:

rivs =argmin {ixg(0) + Lo — (ox — tes 0|
=prox;, ,(zr — tef'(z1))

Define the prox-grad operator
Tf’g(a:) = proxi <a: - 1f’($)> .
L 9 L
Then

w1 =15 (xy)
tg

1
=T — lp— (Ik - T{’g(xk)>
tg

2%
=T — thfig(xk),
ik

where the gradient mapping operator G{’g is defined as

Gl () = L(z = T (x)).

Sufficent decrease (Section 10.3.1)

Gradient mapping (Section 10.3.2)
e Nonconvex case (Section 10.3.3.)
e Convex case (Section 10.4)

e Strongly convex case (Section 10.6)

Theorem 9 (fundamental prox-grad inequality) Suppose
L
FTLw) < f) + ("W). Tu(y) —y) + 51 Tely) - vl*
Then
L 2 L 2
F(z) = F(Ti(y) 2 5 lle = Te@)II” = S llz = ylI” + &5 (2,),

where

Cp(z,y) = f(z) = fly) = (f'(y),z —y).

Proof Consider the function

B(u) = F0) + () u—y) + () + 2 Ju—

12

OPTIMIZATION

Recall that

— argmin {};g@) o B 2}

—argmin { £9(o) + 5lle = oI+ g0 + L Wa - 0)}
—argmin { Lo(a) + glo ol + L W)a - 0)}

—argin {g(a) + 5 o = oI + (7)o)}

~ arg min 6(x)

Then

References

Beck, A. (2017). First-order methods in optimization. STAM.

Gallier, J. and Quaintance, J. (2019). Algebra, Topology, Differential Calculus, and Opti-
mization Theory For Computer Science and Engineering. Philadelphia.

13

	What's Optimization?
	Warmup with Newton's Method
	Assignment 1 (10%): Implement Newton's method

	Background for Projected Gradient Descent
	Assignment 2 (15%): Math basics I

	Projected Gradient Descent
	Assignment 3 (10%): Implement projected gradient descent

	Background for Mirror Descent
	Assignment 4 (15%): Math basics II

	Mirror Descent
	Assignment 5 (10%): Implement mirror descent

	Background for Proximal Gradient Descent
	Proximal Gradient Descent
	Assignment 6 (10%): Implement proximal gradient descent
	Assignment 7: Final Project
	Written part (5%): Derive chain rule for feedforward networks
	Coding part (25%): Implement gradient descent for feedforward networks

