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Value-based RL can be viewed as the combination of stochastic

approximation and dynamic programming

Goal: T(wi) = w,

Incremental learning: wiy1 = we + ao(T (we) — we)

Stochastic approximation: wiy1 = wy + (T (we, Yir1) — we)
E[T(w,y)] =T(w)
Different types of noise {Y;}:

e iid.

e Markov chain

e time-inhomogeneous Markov chain



Following Occam'’s razor, we analyze the algorithms with mini-

mal assumptions / modifications

Don't add projection wyr1 = [ (we + ae( T (we, Yir1) — we))
e Don't use “local clock” a: — a,(v,,,,1)

e Don't assume linear MDP

Don't add regularizer (e.g., ridge)



Case study: linear Q-learning

Wf-‘,—l =Wt + at(Rt+1 + Yy magxx(st_;,_l, a/)TWt — X(St, At)Wt)X(St, At)

A N,th("st)
SA Formulation

Y: =(St, A¢, St+1)  time-inhomogeneous but finite

T(w,(s,a,s")) —w =(r(s,a) +~ ma:/axx(s', a)Tw — x(s,a) " we)x(s, a)



Linear Q-learning does NOT diverge

when an e-softmax behavior policy with an adaptive temperature is used.

exp(TWX(s, a)’ W)

pw(als) :W +(1—¢ Yopexp(twx(s, b) Tw)

o wll, > 1

To otherwise

e Meyn (2024): limsup, ||w:|| < C a.s.
o Liu et al. (2025b): E[\|Wt||2] < C+g(t)



Case study: linear TD()\)

er =Aver—1 + x(St)

Wi =W + ap(Rer1 + "/X(St+1)TWt — X(St)TWt)et

SA Formulation

Y: =(S¢, At, St41, €:)  infinite but compact

T

T(w,(s,a,s,€)) —w=(r(s,a) +yx(s")"w — x(s) " w)e



Does linear TD()) converge?

e With linearly independent features, yes (Tsitsiklis and Roy, 1996)
e But without linearly independent features? hmm...

e asked by Peter (1992); Tsitsiklis and Roy (1996, 1999)

o lime oo x(s)" ¥(s) a.s. (Wang and Zhang, 2024)

W =
o lim¢ oo we(w) = wi(w) (still open)



Case study: GTD())

m(Ae]St)
e =A\V———~¢e;_1 + x(S
Ay T

Wiy =W + Q...

SA Formulation

Yt :(5t7 At7 St+17 et) |nf|n|te
{Y:} behaves really poor (Yu, 2012, 2017)

e unbounded second moments

e unbounded almost surely



Case study: average reward TD

Jep1 =Jp + Be(Rev1 — Jb)
Ver1(Se) =ve(Se) + ae(Rep1 — Je + ve(Se1) — ve(Se))



Average reward TD converges to a sample path dependent fixed

point

e Tsitsiklis and Roy (1999): lim;_o0 d(v¢, Vi) =0 ass.
e Blaser and Zhang (2024): lim;— o0 vi(w) = vi(w)

w is a sample path, i.e., a realization of Sy, Ag, S1, Ry, A1, - ...



Case study: differential Q learning (Wan et al., 2021)

0t =Rey1 — e + ma?}x Ge(Se1, 3/) — q¢(St, Ar)

Jey1 =Jr + amd
qt+1(5ta At) :Clt(5t7 At) + a0y
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Does differential @ learning converge?

e with local clock (a; = (v, 1)), Yes

e without local clock, hmm... unknown, rank 1 pertubation
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https://math.stackexchange.com/questions/4950007/stability-of-rank-1-perturbation-of-stochastic-matrix

Three tools are commonly used

Wil = Wy + at(T(Wh Yt+1) - Wt)

e ODE-based analysis (Benveniste et al., 1990; Kushner and Yin,
2003; Borkar, 2009)

e Liu et al. (2025a)
e “almost” supermartingales (Robbins and Siegmund, 1971)
e Qian et al. (2024)

e Krasnoselskii-Mann (KM) iterations (Krasnosel'skii, 1955; Cominetti
et al., 2014; Bravo and Cominetti, 2022)

e Blaser and Zhang (2024)
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ODE approaches connect stochastic and discrete iterates with

deterministic and continuous trajectories

Wer1 =wi + ae( T (we, Yeg1) — we)

dw(t)
7 T w(e) - w(t)
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Previous ODE approaches have various restrictions

e Kushner and Yin (2003) require stability as a priori
o Assume sup, ||w:|| < oo a.s.
e Add projection wir1 = [ (we + ae( T(we, Yer1) — we))
e Borkar (2009) requires i.i.d. noise or local clock
o [V} iid.
o {Y:} Markovian, a:r — (v,
e Benveniste et al. (1990) require Poisson’s equation; Borkar et al.
(2021) require Lyapunov drift condition V4

e Finite {Y;} is usually fine
e But off-policy traces in GTD(A) (Yu, 2017) or ETD(\) (Yu, 2015)
do not work. Y: = (5S¢, A, Set1, €)
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Liu et al. (2025a) require only Law of Large Numbers!

Law of large numbers on Markov chains

hn1——j£:f Y:) =E[f(y)] as. (LLN)

t—oo t

The {Y;} in both GTD(\) and ETD(\) satisfy this LLN (Yu, 2012, 2015,
2017).

Wey1 =wr + (T (we, Yer1) — we)

Wi — Wiy
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LLN is accompanied by a bunch of other results characterizing

the fluctuation of the empirical mean

Suppose {(;} are i.i.d.
o LLN: limesoo 2300 £(¢e) = E[f(C)] ass.
e Central Limit Theorem (CLT)

Functional CLT (FCLT)

Almost sure convergence rate (e.g., LIL)

High Probability Concentration (e.g., Hoeffding's inequality)

LP convergence rate
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Can we get those characterization for SA with Markov noise?

Wil = We + at(T(Wh Yt+1) - Wt)

e LLN: the ODE approach (Borkar et al., 2021; Liu et al., 2025a)
e CLT: Borkar et al. (2021)
e FCLT: Borkar et al. (2021)
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Can we get those characterization for SA with Markov noise?

Wil = Wy + at(T(Wh Yt+1) - Wt)

Qian et al. (2024) get almost sure convergence rates, maximal
concentration with exponential tails, and LP convergence rates
simultaneously

e Almost sure convergence rates:

o e — e

M () =0 as.

e Concentration:
Pr(flwe — wall” < Cg(t) log(1/6) Vt) > 1
e [P convergence rates:
E[lw — will”) = g(t)
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Qian et al. (2024) are based on “almost” supermartingales and

a skeleton iterates technique

e Supermartingale: E[M; 1My, ..., M < M,

e Almost supermartingale (Robbins and Siegmund, 1971; Chen et al.,
2023; Liu and Yuan, 2024):

E[Me1|Mi, ..., M] < (1 — )M, + o2
e Skeleton iterates — the iterates in a different timescale

Wiyl =W + Oét(T(Wu Yt+1) - Wt)

Wty =W, + i, (T (Wh,) — W, +&m)
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KM iterations use a fox-and-hare race model to solve a recursion

with nonexpansive operators.

e Cominetti et al. (2014)
Wer1 =we + (T (we) — wy)

m n
Wy — Wy = E g T TR(Txj—1 — T Xk—1)

Jj=0 k=m+1

e Bravo and Cominetti (2022): i.i.d. noise
Wer1 =W + (T (We, Yeg1) — wy)
e Blaser and Zhang (2025): Markovian noise

Wep1 =wWe + at(T(Wt; yt+1) - Wt)
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