Understanding the Training and
Inference of Reinforcement Learning

Shangtong Zhang
University of Virginia

What is RL?

What is RL?

 RLis PPO!

What is RL?

R i1 541

Vﬂ'(S) — E[Rt+1 T }/Rt+2 T 72Rt+3 + ... |Sz = 5]

RL = SA + DP

e RL is to use Stochastic Approximation (SA) method to
solve Dynamic Programming (DP) problem

e Bellman operator Iv =r_+ yP_v

RL = SA + DP

e Vi1 =1vi=r_+7yP.v,
e Challenge: unknown P_

e Solution: use a sample

(Po)(s) = D p(s'[)vi(s)

(P v)(s) = vi(s')

RL = SA + DP

Vigr = IV =1, + 7Py

Challenge: full update is too aggressive
Viep1(8) = 7,(8) + yvi(s’)

Solution: incremental update
Vi 1(8) = Vi(8) + oy (1,(s) + yvi(s) — vi(s))

RL = SA + DP

e Vi1 =1vi=r_+7yP.v,

e Challenge: where to get 577

...,Sk,Sk_I_l, oo ey

e Solution: asynchronous update
Vi 168 = Vil(Sp) + g (r,,(Sp) + 7 vilSii 1) — vi(Sp))

RL = SA + DP

* Vig1 = e T h(vy, Yiyy)

» Different h realizes different RL algorithms, e.g.,

TD, Q-learning, linear TD, Gradient TD, Emphatic TD,
average reward TD, differential TD, differential Q-learning

Reinforcement || \'\‘i\\.
Learning A

Does SA converge?

Vi1 = Vi + (v, Yy)
V, — Vi almost surely?

Early RL pioneers borrow results from SA community

Now RL theorists shift to fancier problems, e.g.,
offline RL, RLHF, etc.

Tools in SA community do
not apply to RL well

* Vig1 = e T h(vy, Yiyy)

I Texts and Readings in Mathematics 48

Stochastic

Approximation; Assumption: {Y,} are i.i.d.

A Dynamical Reality in RL: {Y),} are Markov chain
Systems

Viewpoint

Second Edition

Tools in SA community do
not apply to RL well

* Vig1 = e T h(vy, Yiyy)

APPLICATIONS ; Zs
ALY Harold J. Kushner

Paul Dupuis

STOCHASTIC
MODELLING
AND APPLIED

il Numerical Methods
for Stochastic
g Control Problems
- in Continuous Time

o

Assumption: sup, | | v, || < oo a.s.
Reality in RL: very hard to verify

Tools iIn SA community do
not apply to RL well

* Vig1 = e T h(vy, Yiyy)

Assumption: Poisson’s equation
Lyapunov function
Reality in RL: hard to prove existence

Applications of Mathematics

Tools in SA community do
not apply to RL well

* Vig1 = e T h(vy, Yiyy)

NEURO-DYNAMIC
PROGRAMMING

DIMITRI P BERTSEKAS
JOHN N. TSITSIKLIS

Assumption: linear /1

with a negative definite matrix
Reality in RL: not true in many RL algorithms

Why can’t the RL community
have its own SA theory?

* Vig1 = e T h(vy, Yiyy)

Computer Science > Machine Learning

arXiv:2401.07844 (cs)

[Submitted on 15 Jan 2024 (v1), last revised 29 Apr 2024 (this version, v3)]

The ODE Method for Stochastic Approximation
and Reinforcement Learning with Markovian
Noise

Assumption: Law of large numbers (LLN)
Reality in RL: if LLN does not hold,
good luck with your RL alg.

Stochastic approximation is a class of algorithms that update a vector
iteratively, incrementally, and stochastically, including, e.g., stochastic gradient
descent and temporal difference learning. One fundamental challenge in
analyzing a stochastic approximation algorithm is to establish its stability, i.e.,
to show that the stochastic vector iterates are bounded almost surely. In this
paper, we extend the celebrated Borkar-Meyn theorem for stability from the
Martingale difference noise setting to the Markovian noise setting, which greatly
improves its applicability in reinforcement learning, especially in those off-
policy reinforcement learning algorithms with linear function approximation
and eligibility traces. Central to our analysis is the diminishing asymptotic rate
of change of a few functions, which is implied by both a form of strong law of
large numbers and a commonly used V4 Lyapunov drift condition and trivially
holds if the Markov chain is finite and irreducible.

Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.Al)
Cite as: arXiv:2401.07844 [cs.LG]
(or arXiv:2401.07844v3 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2401.07844 o

LLN on Markov chains

X +X+..X,

n

> E1X]

1 n

—) h(Y) =) d(y)h(y)

& =1 y

time average — space average (ergodicity)

automatically hold in finite chains
especially powerful in off-policy RL algorithms with

eligibility traces

Training Is all before deep RL

e Tabular TD

Vi 100 = Vi(Sp) + o (1,:(Sp) + 7S) — vi(Sp))
s = V()

e |inear TD
Wk+1 — Wk + ak(l”ﬂ(Sk) + }/X(Sk_l_l)TWk — X(Sk)TWk)X(Sk)
s — x(s)"w

Inference matters after deep RL

Deep TD
0,1 =0+ a(rS,) +yv(S,.;0) —v(S,;0,) Vv(Ss,; 0,)

Deep-Q-Networks)
Orp1 = 0, + (R +ymax, q(S,,1,a;0) — q(5, A 0)) Vq(S;, A 0))

Training: 60, = 0,,; = ... = 0O

Inference: (s, a) — q(s, a; 6)

In-context learning is perhaps the
most trending inference problem

6 -> number

forward pass of LLM / Transformer
a -> letter >

7 ->

In-context learning is perhaps the
most trending inference problem

forward pass of LLM / Transformer

>

In-context learning is perhaps the
most trending inference problem

forward pass of LLM / Transformer

g 7,(S)

What about predicting
value?

forward pass of LLM / Transformer
»

Humans predict value via TD

Wk+1 — Wk + ak(l’ﬂ(Sk) + }/X(S]H_I)TW](— X(Sk)TWk)X(Sk)

Wy = W; = Wy = W3 = ...

WOT x(s) — wlT x(s) — sz x(s) — w3T x(s) — ...

Transformers CAN mimic
what humans do!

Attention
Layer

Attention
Layer

Attention
Layer

V) = wlT x($) Vy, = WZT x(S)

(If the linear attention layer has special weights)

Transformers DO mimic
what humans do!

e Deep ID
0,1 =0+ a(rS,) +yv(S,.;0) —v(S,;0,) Vv(Ss,; 0,)

e Parameterize v(context, s;) as an L-layer transformer

Attention Attention
Layer ©® © © Layer

Transformers DO mimic
what humans do!

e Run deep TD to train the L-layer transformer v(c, s; 6)
0,1 =0+ a(r,(S,) +yv(cS,.;0)—v(c,S;0)) Vv(c,S; 0,)

* The weights that implement in-context TD emerge after
training!

Final F,

WHY do transformers
mimic what humans do?

e Run deep TD to train the L-layer transformer v(c, s; 6)
0,1 =0+ a(r,(S) +yvi.,S,.;0)—vi,S,;0)) Vv(ic,S,; 6,

* The weights that implement in-context TD form an
iInvariant set of the deep TD update

Transformers can implement
more RL algorithms

* Residual gradient

e TD(A)

 Average-reward TD

In-context regression as gradient
descent (Ahn et.al. 2023)

 RL algorithm is NOT gradient descent
The algorithm in inference is NOT gradient descent
The training algorithm is NOT gradient descent

 RL prediction is inhomogeneous

In-context regression as
gradient descent (Ahn et.al.)

 Jo implement average-reward TD
* multiple head linear attention

e overparameterized prompt

Shuze Liu Shuhang Cheng
(UVA) (Scaled Foundation)

The ODE paper:
https://arxiv.org/abs/2401.07844

The in-context TD paper:
https://arxiv.org/abs/2405.13861

Ethan Blaser Jiuqi Wang Hadi Daneshmand
(UVA) (UVA) (MIT)

https://arxiv.org/abs/2401.07844
https://arxiv.org/abs/2405.13861

Thanks!

