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Canonical RL relies on agent-env interaction
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Case study: AlphaStar
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Trillions of interactions with SCIl simulator!



Online interaction can be slow
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Case study: industrial cooling system
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1M training steps is nothing in RL




Case study: industrial cooling system
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Online interaction can be dangerous
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Self-driving Uber car that hit and killed
woman did not recognize that pedestrians

jaywalk

The automated car lacked "the capability to classify an object as a pedestrian unless that object

was near a crosswalk," an NTSB report said.



Offline RL uses previously logged data
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Case study: Offline AlphaStar
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Case study: Offline AlphaStar
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Offline AlphaStar has more than 90% win-rate against AlphaStar Supervised.



Only two small clouds
remained on the horizon
of knowledge in physics.

William Thomson, Lord Kelvin
1824 - 1907



Offline AlphaStar uses online Monte Carlo for model selection
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Monte Carlo dominates RL evaluation
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99% of such curves in RL papers are generated by online Monte Carlo



It Is desired to do evaluation with offline data
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Model-based offline evaluation reduces to simulator




Model-free offline evaluation reduces to model-selection

l “learning”

density ratio d_(s)/ a’ﬂ(s)

action value function ¢ (s, a)




Model-free offline evaluation reduces to model-selection

learned d_(s)/ dﬂ(s)

learned ¢g,(s, a)
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Offline model selection hardly has correctness guarantee
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Pitfalls of offline evaluation methods

Bias! Bias! Bias!
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99% of such curves in RL papers are generated by online Monte Carlo



Improve Monte Carlo with offline data
while maintaining its unbiasedness

Agent Online Monte Carlo Performance
—

Reduce the required Unbiased
online data evaluation
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Build intuition with STAT 101

e Estimating an expectation [EXNp[ f(X)]
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e Importance sampling
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e Optimal sampling distribution minimizing the variance
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A detailed look at the “optimal” sampling distribution
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Importance sampling Ey., [f(X)] = [Ex., mf(X)
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“Optimal” sampling distribution g(x) =

1. g(x) dose not necessarily cover p(x)
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From STAT 101 to RL 999

e Datain RL {SO’AO’RI’SI’AI’RZ’ ...,RT} ~ U
e Per-decision importance sampling ratio Monte Carlo estimator
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"Improving Monte Carlo Evaluation with Offline Data.”
Shuze Liu, Shangtong Zhang
arXiv:2301.13734, 2023.

* A provably variance reducing behavior policy for the per-decision MC estimator
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e A computationally efficient and model-free method to learn this behavior policy from offline
data



"Improving Monte Carlo Evaluation with Offline Data.”
Shuze Liu, Shangtong Zhang
arXiv:2301.13734, 2023.

e A bandit algorithm to adaptively switch between target and behavior policies for data
collection
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Searching good behavior policies for off-policy MC is not new

e Some cannot exploit offline data and require new online data

e Some assume special structure of the MDP and need to learn a model



Take home message

e Improve Monte Carlo evaluation with offline data might be the next agenda in offline RL
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